Lecture 13:
Nonregular Languages



Recap from Last Time



Theorem: The following are all equivalent:

- L. is a regular language.
- There is a DFA D such that (D) = L.

- There is an NFA N such that £(N) = L.
- There is a regular expression R such that £(R) = L.
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The Model

« The computing device has internal workings that can be
in one of finitely many possible configurations.

 Each state in a DFA corresponds to some possible
configuration of the internal workings.

« After each button press, the computing device does
some amount of processing, then gets to a configuration
where it's ready to receive more input.

 Each transition abstracts away how the computation is done
and just indicates what the ultimate configuration looks like.

« After the user presses the “done” button, the computer
outputs either YES or NO.

 The accepting and rejecting states of the machine model
what happens when that button is pressed.



New Stuff!



First, a Preliminary (and Crucial) Exercise



Suppose we have a DFA for £(a*ub*).

Suppose we
land here upon
reading aaaa.

Note: We have not indicated
whether gk accepts or rejects.

Not knowing what the rest of the DFA
looks like, which of the following can
we say are true?

(a) aaa must also land us in this state

(b) aaa might also land us in this state
(c) aaa could not land us in this state
(d) bbb must also land us in this state

(e) bbb might also land us in this state

(f) bbb could not land us in this state

Answer at
https://cs103.stanford.edu/pollev
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Nonregular Languages



A Powerful Intuition

* Regular languages correspond to problems
that can be solved with finite memory.

* At each point in time, we only need to store
one of finitely many pieces of information.

 Nonregular languages, in a sense, correspond
to problems that cannot be solved with finite
memory.

* Since every computer ever built has finite
memory, in a sense, nonregular languages
correspond to problems that cannot be solved
by physical computers!



Finding Nonregular Languages



Finding Nonregular Languages

« To prove that a language is regular, we can just find a
DFA, NFA, or regex for it.

» To prove that a language is not regular, we need to
prove that there are no possible DFAs, NFAs, or
regexes for it.

* Claim: We can actually just prove that there's no DFA for it.
Why is this?

* This sort of argument will be challenging. Our
arguments will be somewhat technical in nature, since
we need to rigorously establish that no amount of
creativity could produce a DFA for a given language.

* Let's see an example of how to do this.



A Simple Language

 Let 2 = {3, b} and consider the following
language:

E={ab"|n€eN}

* F is the language of all strings of n a's
tollowed by n b's:

{ &, ab, aabb, aaabbb, aaaabbbb, ... }



A Simple Language

E={ab"|neN}

None of these regular expressions are
regexes for the language E. Explain why not.

a*b*
(ab)*
€ U ab U a*b? U a’b?

Answer at https://cs103.stanford.edu/pollev
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We seem to be running into some trouble.
Why is that?



Let's imagine what a DFA for the language
{ a"b" | n € N} would have to look like.

Can we say anything about it?



This isn't a single
transition. Think of it as
“after reading aaaa, we
end up at this state.”

These cannot be
the same state!

-
------
-

.....



A Different Perspective

aaaa aaaabbbb

aa aabbbb
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A Different Perspective

aaaa aaaabbbb

aa aabbbb

What happens if g is...

...an accepting state? We accept aabbbb & E'!
...a rejecting state? We reject aaaabbbb € E!




What’'s Going On?

* Lemma: If D is a DFA for E = {a"b" | n € N} and we run

D on both a? and a%, then those strings do not end in the
same state.

 Two Proof Ideas:

* Direct: The states you reach for a* and a? have to behave
differently when reading b* - in one case it should lead to an

accepting state, in the other it should lead to a rejecting state.
Therefore, they must be different states.

» Contradiction: Suppose you do end up in the same state. Then
a‘b* and a%b* end up in the same state, so we either reject a*b*
(oops) or accept a%b* (oops).

 Powerful intuition: Any DFA for E must keep a? and a*
separated. It needs to remember something
fundamentally different after reading those strings.
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A More General Result

« Lemma: Let D be a DFA for E = {a"b" | n € N}. For any
distinct strings a™ and a", if we run D on both a™ and a”,
then those strings do not end in the same state.

 Two Proof Ideas:

* Direct: The states you reach for a™ and a" have to behave
differently when reading b™ - in one case it should lead to an

accepting state, in the other it should lead to a rejecting state.
Therefore, they must be different states.

» Contradiction: Suppose you do end up in the same state. Then
a™b™ and a™b” end up in the same state, so we either reject a”b™
(oops) or accept amb” (oops).

 Powerful intuition: Any DFA for E must keep a™ and a”
separated. It needs to remember something
fundamentally different after reading those strings.



A Bad Combination

* Suppose there is a DFA D for the language
E={ab"|n€eN }.

 We know the following:

* Any two strings of the form a™ and a”, where m # n,
cannot end in the same state when run through D.

 There are infinitely many strings of the form a™.

« However, there are only finitely many states they

can end up in, since D is a deterministic finite
automaton!

 What happens if we put these pieces together?
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when run through D. (How do we know??)
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through D.
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Theorem: The language E = { a"b" | n € N } is not regular.

Proof: Suppose for the sake of contradiction that E is regular.
Let D be a DFA for E, and let k be the number of states in
D. Consider the strings a° at, a?, ..., ak. This is a collection
of k+1 strings and there are only k states in D. Therefore,
by the pigeonhole principle, there must be two distinct
strings a™ and a"” that end in the same state when run
through D. But this is impossible, since we know that a™
and a" cannot end in the same state when run through D.

We have reached a contradiction, so our assumption must
have been wrong. Therefore, E is not regular.

We're going to see a simpler proof of this result later on once we've built more
machinery. If (hypothetically speaking) you want to prove something like this in
the future, we'd recommend not using this proof as a template.




What Just Happened?

 We've just hit the limit of finite-
memory computation.

 To build a DFAfor E ={ a»h"|n €N },
we need to have different memory
configurations (states) for all possible
strings of the form a".

 There's no way to do this with finitely
many possible states!
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What Just Happened?

L9
 We've just hit the limit of finite-

memory computation.

 To build a DFAfor E ={ a»h"|n €N },
we need to have different memory
configurations (states) for all possible
strings of the form a".

wW

A%

 There's no way to do this with finitely
many possible states!



What Just Happened?

L9
- We've just hit the limit of finite- _,
memao mputation.

 To build a DFAfor E ={ a»h"|n €N },
we need to have different memory
configurations (states) for all possible
strings of the form a”.

 There's no way to do this with finitely
many possible states!



Time-Out for Announcements!



Second Midterm Logistics

* Our second midterm exam is next Tuesday, February
25t from 7-9 PM. Locations vary (mostly CEMEX).

 Check seating assignment page! Big shake-up!

» Topic coverage is primarily lectures 06 - 13 (functions
through induction) and PS3 - PS5. Finite automata and
onward won’t be tested here.

 Because the material is cumulative, topics from PS1 - PS2 and
Lectures 00 - 05 are also fair game.

« The exam is closed-book and closed-computer. You can
bring one double-sided 8.5” X 11” sheet of notes with you.

 Students with accommodations and alternate
arrangements: check seating assignment page. Contact us
if anything is amiss.



Review Session

 Anisha and Zach will be holding a review session
Sunday, February 23 from 4-6 PM in CoDa
E160.

« As with last time, this is not recorded.

« As with last time, come prepared with questions
you want to ask.

 We also have a ton of practice exams up on the
course website.

* Best of luck - you can do this!
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Back to CS103!



Generalizing the Proof



What We Did

e Our proof that E = {a"b" | n € N} is not regular
relied on several observations:

* No two strings of the form a™ and a" can end in the
same state in any DFA for E, because there’s a string
we can append that puts one in the language and keeps
the other out.

* There are infinitely many strings of this form, so we can
run as many of them as we’d like through a DFA for E.

« DFAs only have finitely many states, so by the
pigeonhole principle any DFA for E necessarily has to
put two of these strings in the same place.

 So there can’t be a DFA for E.
* Question: Can we generalize this idea?



What We Did

* No two strings of the form a™ and a" can end in the
same state in any DFA for E, because there’s a string
we can append that puts one in the language and keeps
the other out.



Distinguishability

 Let L be an arbitrary language over 2.

 Two strings x € 2* and y € 2* are called
distinguishable relative to L if there is a string
w € 2* such that exactly one of xw and yw is in L.

- We denote this by writing x =, y.
- Formally, we say that x Z, y if the following is true:

dweX*, (xwe€Loywé¢lL)

This 1s how we
express exclusive *0OrR”
in proposifional logic,




Distinguishability

« Consider the language
E={ab"|né€eN }

« There’s a collection of
strings to the right.

« Which pairs of these strings
are distinguishable relative
to E? What would you
append to distinguish
them?

« Two strings x and y are
distinguishable relative to E
if there’s a string w where
exactly one of xw and yw
belongs to E.

)

o ) o)

)

Answer at
https://cs103.stanford.edu/pollev
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Distinguishability

« Consider the language
E={ab"|né€eN }

« There’s a collection of
strings to the right.

« Which pairs of these strings
are distinguishable relative
to E? What would you
append to distinguish
them?

« Two strings x and y are
distinguishable relative to E
if there’s a string w where
exactly one of xw and yw
belongs to E.




Distinguishability

* A palindrome is a string that is the same when the
characters are read left-to-right and right-to-left.

« Consider the language
L={we{a, b}*|wis a palindrome }

 Which pairs of the strings below are distinguishable relative
to L? What would you append to distinguish them?

o )
o ) o)

Answer at
[ FEE ] https://cs103.stanford.edu/pollev
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Distinguishability

* A palindrome is a string that is the same when the
characters are read left-to-right and right-to-left.

« Consider the language
L={we{a, b}*|wis a palindrome }

 Which pairs of the strings below are distinguishable relative
to L? What would you append to distinguish them?

aab

ddad




Distinguishing Sets

 Let L C 2* be a language. A distinguishing set for L
is set S C 2* where the following is true:

Vx €ES.Vy€S. (x #y- X ZLY).

* In other words, it’s a set of strings S where all pairs of
distinct strings in S are distinguishable relative to L.




Distinguishing Sets

e letE =

{a’b"|n €N }.

 Which of the following are distinguishing

sets for i

F?

{e& a ab}
a*
{ab"|neN }

Answer at
https://cs103.stanford.edu/pollev
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Distinguishing Sets

cletL={we{a b}*|wisa
palindrome }.

 Which of the following are distinguishing
sets for L?

{¢&, a ab}
a*
{ab"|neN }

Answer at
https://cs103.stanford.edu/pollev
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Distinguishability

« Theorem: Let L be an arbitrary language over . Let
X € 2* and y € ¥* be strings where x Z, y. Then if D is any

DFA for L, then D must end in different states when run on
inputs x and y.

 Proof sketch:




Theorem (Myhill-Nerode): Let L be a
language. If L has an infinite
distinguishing set (a distinguishing set
containing infinitely many strings), then L
i1s not regular.
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Using the Myhill-Nerode Theorem
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Approaching Myhill-Nerode

 The challenge in using the Myhill-Nerode
theorem is finding the right set of strings.

e General intuition:

« Start by thinking about what information a
computer “must” remember in order to answer
correctly.

 Choose a group of strings that all require
different information.

* Prove that you have infinitely many strings an
that the group of strings is a distinguishing set.



Tying Everything Together

* One of the intuitions we hope you develop for
DFAs is to have each state in a DFA represent
some key piece of information the automaton
has to remember.

* If you only need to remember one of finitely
many pieces of information, that gives you a
DFA.

* This can be made rigorous! Take CS154 for details.

» If you need to remember one of infinitely many
pieces of information, you can use the Myhill-
Nerode theorem to prove that the language
has no DFA.



Where We Stand



Where We Stand

« We've ended up where we are now by trying to answer the
question “what problems can you solve with a computer?”

 We defined a computer to be DFA, which means that the
problems we can solve are precisely the regular languages.

« We've discovered several equivalent ways to think about
regular languages (DFAs, NFAs, and regular expressions)
and used that to reason about the regular languages.

« We now have a powerful intuition for where we ended up:
DFAs are finite-memory computers, and regular languages
correspond to problems solvable with finite memory.

« Putting all of this together, we have a much deeper sense
for what finite memory computation looks like - and what it
doesn't look like!



Where We're Going

« What does computation look like with
unbounded memory?

 What problems can you solve with
unbounded-memory computers?

« What does it even mean to “solve” such a
problem?

 And how do we know the answers to any
of these questions?



Your Action Items

* Read “Guide to the Myhill-Nerode
Theorem”

* It’s a useful refresher and deep-dive into all
the topics we covered today.

 And it has worked exercises to give you a
sense of how the theorem works!



Next Time

* Context-Free Languages

 Context-Free Grammars
* Generating Languages from Scratch
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